Cochlear supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 signalling.
نویسندگان
چکیده
In mammals, cochlear sensory hair cells that are responsible for hearing are postmitotic and are not replaced after loss. One of the most promising strategies to regenerate hair cells is to identify and inhibit the factors preventing the conversion of adjacent non-sensory supporting cells into hair cells. Here we demonstrate that mammalian hair cells can be directly generated from supporting cells by inhibition of ephrin-B2 signalling. Using either ephrin-B2 conditional knockout mice, shRNA-mediated gene silencing or soluble inhibitors, we found that downregulation of ephrin-B2 signalling at embryonic stages results in supporting cell translocation into hair cell layers and subsequent switch in cell identity from supporting cell to hair cell fate. As transdifferentiation is here a result of displacement across boundary, this original finding presents the interest that newly generated hair cells directly integrate either hair cell layer, then would be likely more rapidly able to fit into functional circuitry.
منابع مشابه
Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma
Hearing loss due to damage to auditory hair cells is normally irreversible because mammalian hair cells do not regenerate. Here, we show that new hair cells can be induced and can cause partial recovery of hearing in ears damaged by noise trauma, when Notch signaling is inhibited by a γ-secretase inhibitor selected for potency in stimulating hair cell differentiation from inner ear stem cells i...
متن کاملTherapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملNotch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear.
Each of the sensory patches in the epithelium of the inner ear is a mosaic of hair cells and supporting cells. Notch signalling is thought to govern this pattern of differentiation through lateral inhibition. Recent experiments in the chick suggest, however, that Notch signalling also has a prior function - inductive rather than inhibitory - in defining the prosensory patches from which the dif...
متن کاملSpontaneous hair cell regeneration in the neonatal mouse cochlea in vivo.
Loss of cochlear hair cells in mammals is currently believed to be permanent, resulting in hearing impairment that affects more than 10% of the population. Here, we developed two genetic strategies to ablate neonatal mouse cochlear hair cells in vivo. Both Pou4f3(DTR/+) and Atoh1-CreER™; ROSA26(DTA/+) alleles allowed selective and inducible hair cell ablation. After hair cell loss was induced a...
متن کاملNotch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway.
The activation of cochlear progenitor cells is a promising approach for hair cell (HC) regeneration and hearing recovery. The mechanisms underlying the initiation of proliferation of postnatal cochlear progenitor cells and their transdifferentiation to HCs remain to be determined. We show that Notch inhibition initiates proliferation of supporting cells (SCs) and mitotic regeneration of HCs in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 6 شماره
صفحات -
تاریخ انتشار 2015